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1. Term by term integration of Fourier series

(a) If f(x) is a piecewise-continuous function on [−l, l], show that F (x) =
∫ x
−l f(s)ds has a full Fourier

series that converges pointwise.

(b) If f(x) is a piecewise-continuous function on [−l, l], show that

F (x) =

∫ x

−l
f(s)ds =

a0
2

(x+ l) +
l

nπ

∞∑
n=1

an sin
nπx

l
− bn cos

nπx

l
+ (−1)nbn

where a0, an, bn, n = 1, 2, · · · are Fourier coefficients of f(x) which is given by

an =
1

l

∫ l

−l
cos

nπx

l
f(x)dx, n = 0, 1, · · ·

bn =
1

l

∫ l

−l
sin

nπx

l
f(x)dx, n = 1, 2, · · ·

Solution:

(a) First F (x) is continuous on [−l, l]. Second, F ′(x) = f(x) is piecewise-continuous on[−l, l]. Thus
the full Fourier series of F (x) converges pointwise to F (x) on (−l.l).

(b) Consider G(x) = F (x) − a0
2 (x + l). Note that a0 = 1

l

∫ l
−l f(x)dx = 1

lF (l), we have G(−l) =
G(l) = 0. Then we can expand G(x) as a continuous function of period 2l. G′(x) = f(x)− a0

2 is
piecewise-continuous on whole line. Thus the full Fourier series of G(x) converges pointwise to
G(x) for −∞ < x <∞.

The full Fourier series of G(x) is

G(x) =
1

2
A0 +

∞∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
)

where the coefficients are

An =
1

l

∫ l

−l
G(x) cos(

nπx

l
)dx

=
1

nπ
sin(

nπx

l
)G(x)

∣∣∣l
−l
− 1

nπ

∫ l

−l
sin(

nπx

l
)(f(x)− a0

2
)dx

=− 1

nπ

∫ l

−l
sin(

nπx

l
)f(x)dx

=− l

nπ
bn, n = 1, 2, · · ·
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Bn =
1

l

∫ l

−l
G(x) sin(

nπx

l
)dx

=− 1

nπ
cos(

nπx

l
)G(x)

∣∣∣l
−l

+
1

nπ

∫ l

−l
cos(

nπx

l
)(f(x)− a0

2
)dx

=
1

nπ

∫ l

−l
cos(

nπx

l
)f(x)dx

=
l

nπ
an, n = 1, 2, · · ·

For the coefficient A0, by taking x = −l, we have 0 = G(l) = A0
2 +

∑∞
n=1An(−1)n. Hence

F (x)− a0
2

(x+ l) =
l

nπ

∞∑
n=1

an sin
nπx

l
− bn cos

nπx

l
+ (−1)nbn

2. Shifting data method

Consider the following inhomogeneous wave equations:
utt − c2uxx = F (x) coswt

u(0, t) = H coswt, u(l, t) = K coswt

u(x, 0) = φ(x), ut(x, 0) = ψ(x)

(1)

We wish to subtract a solution of{
Utt − c2Uxx = F (x) coswt

U(0, t) = H coswt, U(l, t) = K coswt

A good guess is that U should have the form U(x, t) = u0(x) coswt, thus u0(x) satisfies{
− w2u0 − c2u′′0 = F (x)

u0(0) = H, u0(l) = K

This is a solvable second order ODE. Thus we can find a special solution U(x, t) = u0(x) coswt.

Let u be a solution to (1), set v = u− U , then v satisfies
vtt − c2vxx = 0

v(0, t) = 0, v(l, t) = 0

v(x, 0) = φ(x)− u0(x), ut(x, 0) = ψ(x)

(2)

This is a solvable homogeneous wave problem which we can use the seperation of variables, for example.

3. Invariance Properties of ∆3

(a) ∆3 is invariant under translation.

(b) ∆3 is invariant under rotation.

Any rotation in three dimensions is given by

x′ = Ox

where O = (oij) is an othogonal matrix, that is, OtO = OOt = I. Therefore,

∆u =

3∑
i,j=1

δijuij =

3∑
i,j=1

δij∂i(

3∑
k=1

ux′k
dx′k
dxi

) =
3∑

i,j=1

δij∂i(
3∑

k=1

ux′koki) =
3∑

i,j=1

δij

3∑
k,l=1

ux′kx
′
l
okiolj

=

3∑
i,k,l=1

ux′kx
′
l
okioli =

3∑
k,l=1

ux′kx
′
l
δkl = ∆′u

where we have used
∑3

i=1 okioli = δkl.
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(c) For the three-dimensional laplacian

∆3 = ∂2x + ∂2y + ∂2z

it is natural to use spherical coordinates (r, θ, φ). First, consider the chain of variables (x, y, z)→
(s, φ, z) which is given by

x = s cosφ

y = s sinφ

z = z

By the two-dimensional Laplace calculation, we have

uxx + uyy = uss +
1

s
us +

1

s2
uφφ.

Second, consider the chain of variables (s, φ, z)→ (r, φ, θ) which is given by

s = r sin θ

z = r cos θ

φ = φ

By the two-dimensional Laplace calculation, we have

uss + uzz = urr +
1

r
ur +

1

r2
uθθ.

Thus we have

∆3u = uxx + uyy + uzz =
1

s
us +

1

s2
uφφ + urr +

1

r
ur +

1

r2
uθθ.

And note that s = r sin θ and us = ur
∂r
∂s + uθ

∂θ
∂s = ur

s
r + uθ

cos θ
r . Therefore

∆3u =
1

r2
cot θuθ +

1

r2 sin2 θ
uφφ + urr +

2

r
ur +

1

r2
uθθ.

(d) Now we want to find a solution which don’t change under rotations, that is, which depend only
on r. Thus

0 = ∆3u = urr +
2

r
ur.

So (r2ur)r = 0. It has the solutions r2ur = c1. That is, u = −c1 1r + c2. The important harmonic
function

u(r) =
1

r
= (x2 + y2 + z2)−

1
2

is called the fundamental solution of ∆3u = 0.

3


